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Classification Problem

We want to solve the binary classification problem

I Training set X = {(x1, y1), ..., (xN , yN)} ⊂ Rm × {−1, 1}

. Input space Rm

. training examples xi and

. class labels yi

Goal:

I Assign the vector x to one of the classes −1 or 1

We will consider the multiclass problem later.
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Classification Problem - Visualization
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Linear discriminant functions and linear classifiers

Definition 1. Linear discriminant function defined as

f : Rm 7→ R, x 7→ wTx + b =
m∑
i=1

wixi + b (1)

I w ∈ Rm is called weight vector

I b ∈ R is called bias

Definition 2. Linear classifier defined as

hf : Rm 7→ {−1, 1}, x 7→ sign(f(x)) =

{
1 if f(x) ≥ 0

−1 otherwise
(2)
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Decision surface and decision regions

Definition 3. Decision surface of a linear classifier hf is defined by: f(x) = 0

w

f(x) > 0f(x) < 0

x1

x2

f(x) = 0

Class −1 Class 1

Decision surface of a linear classifier (red) is an (m− 1)-dimensional hyperplane.
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Linear separability

Definition 4. X = {(x1, y1), ..., (xN , yN)} is called linearly separable if

∃hf : hf(xi) = yi, ∀i = 1, ..., N (3)

(i.e. there exists a classifier hf that classifies all points correctly).
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Linear separability - Visualization
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Linear classifiers and inseparable training sets

How can we use linear classifiers for linearly inseparable training sets?

I Idea: Map the data into another space in which it is linearly separable
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Feature Space Mappings

Definition 5. LetH be a D-dimensional Hilbert space, D ∈ N ∪ {∞}.
A feature space mapping is defined as

φ : Rm 7→ H, x 7→ (φi(x))
D
i=1 (4)

I φi are called basis functions

I H is called feature space

Linear discriminant function with feature space mapping φ

f(x) = 〈w, φ(x)〉+ b, w ∈ H (5)

〈·, ·〉 is the inner product ofH

A Hilbert space is a vector space with inner product 〈·, ·〉.
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Separate the XOR Example

LetH ≡ R2 with 〈x, y〉 ≡ xTy = x · y (dot product)

φ : R2 7→ H, x 7→
(

x1

x1x2

)
(6)

f(x) = (0 1)Tφ(x) + 0 = x1x2 (7)
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Feature Space Mappings - Complexity

I Evaluation of f : Rm 7→ R without feature space mapping

f(x) = wTx + b,w ∈ Rm (8)

Complexity: O(m)

I Evaluation of f with feature space mapping

f(x) = 〈w, φ(x)〉+ b,w ∈ H (9)

Complexity: O(dim(H))

Typically dim(H)� m.
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Reducing complexity

Idea: The inner product 〈φ(x), φ(y)〉 can often be computed very efficiently.

Simple example:

φ(x) =

 x2
1√

2x1x2

x2
2

 (10)

Let x, y ∈ R2 arbitrary. Then

〈φ(x), φ(y)〉 =φ(x)Tφ(y) (11)
=x2

1y
2
1 + 2x1x2y1y2 + x2

2y
2
2 (12)

=(xTy)2 (13)

I Naive computation: 11 multiplications, 2 additions

I Optimized computation: 3 multiplications, 2 additions
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Kernel Functions

Definition 6. Let φ : Rm 7→ H be a feature space mapping.

k(x, y) = 〈φ(x), φ(y)〉 (14)

is called kernel function or kernel.

Interpretation: A kernel measures similarity.
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Dual form

In order to use kernels, we need to formulate our algorithms in the so called dual form.

I φ(x) occurs only as argument of an inner product 〈·, ·〉

Definition 7. Let X = {(x1, y1), ..., (xN , yN)} be a training set.

I Linear discriminant function f in dual form:

f(x) =
N∑
i=1

θik(xi, x) + b, θi ∈ R, i = 1, ..., N (15)

(16)

We will see later how to determine θi.
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Kernel Functions - Complexity

I Evaluation of f : Rm 7→ R without feature space mapping

f(x) = wTx + b,w ∈ Rm (17)

Complexity: O(m)

I Evaluation of f with feature space mapping

f(x) = 〈w, φ(x)〉+ b,w ∈ H (18)

Complexity: O(dim(H))

I Evaluation of f in the dual form

f(x) =
N∑
i=1

θik(x, xi) + b, θi ∈ R (19)

Complexity: O(N)

(Assuming k(·, ·) can be evaluated efficiently)
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Popular kernel functions

There are many known kernels. Popular examples:

I Polynomial kernel

k(x, y) = (xTy + c)d, c ∈ R, d ∈ N0 (20)

I Gaussian kernel

k(x, y) = exp

(−‖x− y‖22
σ2

)
, σ ∈ R+ (21)

Both kernels are widely used in practice.
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SVMs - Motivation

Support Vector Machines (SVMs) arose from the theoretical question:

I Given a training set. What is the optimal linear classifier?
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Concept of margins

Definition 8. I hf linear classifier

I X training set

I (geometric) margin γ of hf on X is the smallest distance from a point to the decision surface
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Expected generalization error

I Vapnik answered the question using statistical learning theory

. Idea: The optimal classifier has the lowest expected error on unknown data

I Data (points and labels) is generated i.i.d. according to a fixed but unknown distribution D

Upper bound on the generalization error

∑
i∈{−1,1}

∫
Rm

1

2
|1− yhf(x)|p(x, y)dx ≤ ε(hf , X) (22)
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Maximum margin classifiers

Given a linearly separable training set.
What is the optimal linear classifier in terms of the upper bound ε?

Result:

I The linear classifier with the largest margin γ on the training set.

. Such classifiers are called maximum margin classifiers

See

I [Vapnik 95] for an introduction to statistical learning theory

I [Boser & Guyon+ 92] and [Vapnik 82] for more theoretical background on SVMs

I [Christiani & Shawe-Taylor 00] for a good overview

I [Shawe-Taylor & Bartlett+ 98] and [Bartlett & Shawe–Taylor 99] for Data Dependent Struc-
tural Risk Minimization
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Maximum margin visualized

Decision surface of a maximum margin classifier:
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Computing margins

Lemma 1. Margin of hf on X can be computed by

γ = min
i=1,...,N

yif(xi)

‖w‖2
(23)

I yif(xi)
‖w‖2

is the euclidean distance from the point xi to the decision surface
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SVM Learning

Assume the training set X = {(x1, y1), ..., (xN , yN)} is linearly separable.

I How can we determine w, b such that the margin is maximal?

max
w,b

γ = max
w,b

min
i=1,...,N

yif(xi)

‖w‖2
(24)

Observation:

I If we scale w and b, the decision surface does not move:

λf(x) = 0⇔ f(x) = 0, for λ > 0 (25)

. (w, b) and (λw, λb) induce the same decision surface

Idea:

I Scale w, b such that

yif(xi) = 1 (26)

for the training examples xi that have the smallest distance to the decision surface

Tobias Pohlen: Support Vector Machines 25 / 48 February 10, 2014



Optimization problem (primal form)

We can maximize γ by minimizing ‖w‖2:

max
w,b

γ = max
w,b

min
i=1,...,N

yif(xi)

‖w‖2
= max

w,b

1

‖w‖2
(27)

=
1

minw,b‖w‖2
(28)

Resulting optimization problem in the linearly separable case (primal form):

min
w∈Rm,b∈R

1

2
‖w‖22 (29)

subject to yif(xi) ≥ 1, i = 1, ..., N (30)
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Optimization theory: Lagrange multipliers

Introduce Langrange function and Lagrange multipliers.

Optimization problem:

min
x∈Rm

f(x) subject to
{
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I (31)

Lagrange function:

L(x, λ) = f(x)−
∑
i∈E∪I

λici(x) (32)

I λ = (λ1, ..., λl) are called Lagrange mutlipliers

Minimizing f subject to the constraints is equivalent to

I Minimizing L w.r.t. x

I Maximizing L w.r.t. λ

Tobias Pohlen: Support Vector Machines 27 / 48 February 10, 2014



Optimization theory: KKT conditions

First order necessary conditions

If x∗ is local minimum of f (respecting the constraints), then there exists λ∗ such that

∇xL(x∗, λ∗) = 0 (33)
ci(x

∗) = 0, ∀i ∈ E (34)
ci(x

∗) ≥ 0, ∀i ∈ I (35)
λ∗i ≥ 0, ∀i ∈ I (36)

λ∗ici(x
∗) = 0, ∀i ∈ E ∪ I (37)

I All these conditions are called Karush-Kuhn-Tucker conditions (KKT conditions)

I The last conditions are called complementary conditions

See [Nocedal & Wrigt 06] for an in-depth introduction.
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Lagrangian and KKT conditions

SVM training problem: X = {(x1, y1), ..., (xN , yN)} is linearly separable

min
w∈Rm,b∈R

1

2
‖w‖22 (38)

subject to yi(〈w, φ(xi)〉+ b)− 1 ≥ 0, i = 1, ..., N (39)

Lagrange function:

L(w, b, α) =
1

2
‖w‖22 −

N∑
i=1

αi(yi(〈w, φ(xi)〉+ b)− 1) (40)

KKT conditions:

∂

∂w
L(w, b, α) = w −

N∑
i=1

yiαiφ(xi)
!
= 0⇒ w =

N∑
i=1

yiαiφ(xi) (41)

∂

∂b
L(w, b, α) =

N∑
i=1

yiαi
!
= 0 (42)
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Finding the dual (part 1)

KKT condition (part 1)

∂

∂w
L(w, b, α) = w −

N∑
i=1

yiαiφ(xi)
!
= 0⇒ w =

N∑
i=1

yiαiφ(xi) (43)

Substituting this condition back into the Langrange function:

L(w, b, α) =
1

2
‖w‖22 −

N∑
i=1

αi(yi(〈w, φ(xi)〉+ b)− 1) (44)

=
1

2

〈
N∑
i=1

yiαiφ(xi),
N∑
i=1

yiαiφ(xi)

〉
−

N∑
i=1

αi

yi
〈 N∑

i=j

yjαjφ(xj), φ(xi)

〉
+ b

− 1


(45)

=
1

2

N∑
i=1

N∑
j=1

yiyjαiαj〈φ(xi), φ(xj)〉 −
N∑
i=1

N∑
j=1

yiyjαiαj〈φ(xi), φ(xj)〉 − b
N∑
i=1

αiyi +
N∑
i=1

αi

(46)

=
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαj〈φ(xi), φ(xj)〉 − b
N∑
i=1

αiyi (47)
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Finding the dual (part 2)

KKT condition (part 2)

∂

∂b
L(w, b, α) =

N∑
i=1

yiαi
!
= 0 (48)

Substituting this condition back into the Langrange function:

L(w, b, α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαj〈φ(xi), φ(xj)〉 − b
N∑
i=1

αiyi︸ ︷︷ ︸
=0

(49)

=
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαj 〈φ(xi), φ(xj)〉︸ ︷︷ ︸
=k(xi,xj)

(50)
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Optimization problem (dual form)

KKT-conditions for inequality constraints:

λ∗i ≥ 0, ∀i ∈ I (51)

Optimization problem in the dual form: X = {(x1, y1), ..., (xN , yN)} is linearly separable

max
α∈RN

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαjk(xi, xj) (52)

subject to
N∑
i=1

yiαi = 0 (53)

αi ≥ 0, i = 1, ..., N (54)

I This is a quadratic programming problem

. Quadratic objective function, Linear constraints

. Convex problem⇒ Unique solution

I Can be solved using standard solvers

. Complexity O(N3), N = # training examples
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SVM classification

How do we classify new data points?

I Need to determine θi for the dual form f(x) =
∑N

i=1 θik(xi, x)

KKT conditions yield:

∂

∂w
L(w, b, α) = w −

N∑
i=1

yiαiφ(xi)
!
= 0 (55)

⇔ w =
N∑
i=1

yiαiφ(xi) (56)

Insert into linear discriminant function (primal form):

f(x) = 〈w, φ(x)〉+ b (57)

=

〈
N∑
i=1

yiαiφ(xi), φ(x)

〉
+ b (58)

=
N∑
i=1

yiαi︸︷︷︸
θi

k(xi, x) + b (59)
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Sparsity

Why is it called a sparse kernel machine?

I Recall: Evaluating f(x) in the dual form costs O(N)

f(x) =
N∑
i=1

yiαik(x, xi) + b, αi ∈ R (60)

Optimization problem (primal form):

min
w∈Rm,b∈R

1

2
‖w‖22 (61)

subject to yif(xi)− 1 ≥ 0, i = 1, ..., N (62)

Complementary conditions:

αi(yif(xi)− 1) = 0, ∀i = 1, ..., N (63)

Meaning

I Either αi = 0

I Or yif(xi) = 1
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Support vectors

αi(yif(xi)− 1) = 0, ∀i = 1, ..., N (64)
⇒ αi = 0 ∨ yif(xi) = 1 (65)

⇒ only the Lagrange multipliers of the points closest to the hyperplane are non-zero.

I We call those points support vectors

I Set of support vector indices is denoted by SV

I Evaluating f in the dual form is linear in the number of support vectors

f(x) =
N∑
i=1

yiαik(x, xi) + b =
∑
i∈SV

yiαik(x, xi) + b (66)

I Typically:

N � |SV| (67)
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Support vectors visualized
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I Support vectors are circled

I Dashed lines are called margin boundaries
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Support vectors - Implications

I Only the support vectors influence the decision surface

I The support vectors are the points hardest to classify

. Give insight into the classification problem

I After learning, only the support vectors and their respective weights have to be saved

. Modelsize is small compared to the size of the training set

Tobias Pohlen: Support Vector Machines 37 / 48 February 10, 2014



Remaining questions

I What do we do if X is not linearly separable?

I What do we do if we have more than two classes?
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Learning inseparable case

X is not linearly separable.
I Introduce a penalty for points that violate the maximum margin constraint

I Penalty increases linearly in the distance from the respective boundary

. Introduce so called slack variables ξi

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

Optimization problem (primal form):

min
w∈Rm,b∈R,ξ∈RN

1

2
‖w‖22 + C‖ξ‖1 (68)

subject to yi(〈w, φ(xi)〉+ b)− 1 + ξi ≥ 0, i = 1, ..., N (69)
ξi ≥ 0, i = 1, ..., N (70)

Imagesource: C. M. Bishop http://research.microsoft.com/en-us/um/people/cmbishop/prml/webfigs.htm
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Learning inseparable case - Dual form

The dual form can be found in the same manner as in the linearly separable case.
Result:

max
α∈RN

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαjk(xi, xj) (71)

subject to
N∑
i=1

yiαi = 0 (72)

0 ≤ αi ≤ C, i = 1, ..., N (73)

I C is a tradeoff parameter that determines how strongly a point is punished

I b can be calculated as before

I Points for which αi 6= 0 are still support vectors
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SVMs for multiclass problems

If we have K classes 1, ...,K.

I Train K SVMs (one-against-all)

. Get K linear discriminant functions f1, ..., fK

I Assign a point to the class whose hyperplane is furthest from it

I Resulting classifier

hf1,...,fK(x) = argmax
i=1,...,K

fi(x) (74)
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SVMs in practice

In MATLAB

I Implement on your own (5 lines of code)

. Use quadprog to solve the quadratic programming problem

I Or use the built in library (better optimizer)

. svmtrain to train the SVM

. svmclassify to classify new data points

I Documentation: doc svmtrain or doc quadprog

In C++

I Very good and easy to use libraries are available such as

. LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/

. SVMLight http://svmlight.joachims.org/

I Highly optimized quadratic programming solvers

I Significantly faster than MATLAB
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USPS Data Set

USPS Data set (9298 16× 16 images)

Used feature vectors:

→


5

4
...

152

31

 ∈ R256 (75)
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Performance comparison

SVM performance benchmark as summarized by Vapnik in [Vapnik 95]

Classifier Best parameter choice |SV| Raw error in %
Human performance - - 2.5%
Decision tree, C4.5 - - 16.2%
Best two-layer neural network - - 5.9%
Five-layer network (LeNet 1) - - 5.1%
SVM with polynomial kernel d = 3 274 4.0%
SVM with Gaussian kernel σ2 = 0.3 291 4.1%
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Limitations of SVMs

I It’s not clear how an appropiate kernel should be chosen for a given problem

I Computationally expensive:

. Training in the dual form (N training examples): O(N3)

◦ Infeasible for large-scale applications
. Training in the primal form (m-dimensional input space): O(m3)

. Evaluation of f in the dual form more expensive than in the primal form

. Evaluation practically infeasible if number of support vectors is very large
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Conclusion

I SVMs use a simple linear model

I Feature space mappings enlarge the range of linearly separable training sets

. They can efficiently be used by enabling kernel functions

I Good generalization performance

. Margin concept

I Convex optimization problem

I In practice SVMs are good blackbox classifiers

. They give reasonable good results without much effort

. When dealing with new classification problems, it’s often a good choice to try SVMs using
different kernels
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Support Vector Machines - References

See

I [Nocedal & Wrigt 06] for an indepth introduction to numerical optimization (theory and prac-
tice)

I [Bishop 06] and [Christiani & Shawe-Taylor 00] for the derivations of the dual forms

I [Burges 98] for some thoughts about limitations

I [Dalal & Triggs 05] for a practical application of SVMs in computer vision

I [Vapnik 95] For a performance comparison (Kernel SVM vs. Neural Network)

I [Shawe-Taylor & Cristianini 06] for more background on kernels

I [Mercer 09] for a proof of Mercer’s theorem
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Thank you for your attention

Tobias Pohlen

tobias.pohlen@rwth-aachen.de

http://www.geekstack.net/seminar-paper
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