

Support Vector Machines

Tobias Pohlen

Selected Topics in Human Language Technology and Pattern Recognition February 10, 2014

> Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University, Germany

Outline

- 1. Introduction
- 2. Recap: Linear classifiers
- 3. Feature space mappings and kernel functions
- 4. Support Vector Machines
 - (a) Motivation
 - (b) Learning
 - (c) Limitations
- 5. Conclusion

- N. Christiani, J. Shawe-Taylor An introduction to support vector machines, Cambridge University Press, 2000.
 - Indepth introduction to SVMs (theoretical and practical concepts)
- V. N. Vapnik The nature of statistical learning theory, Springer, 1995
 - Theoretical background of SVMs
- C. J. C. Burges A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 1998, pages 121-167
 - Good and short introduction to SVMs (Only 40 pages)

Classification Problem

We want to solve the binary classification problem

- ▶ Training set $X = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\} \subset \mathbb{R}^m \times \{-1, 1\}$
 - \triangleright Input space \mathbb{R}^m
 - \triangleright *training examples* \mathbf{x}_i and
 - \triangleright class labels y_i

Goal:

 \blacktriangleright Assign the vector x to one of the classes -1 or 1

We will consider the multiclass problem later.

Classification Problem - Visualization

Linear discriminant functions and linear classifiers

Definition 1. Linear discriminant function defined as

$$f : \mathbb{R}^m \mapsto \mathbb{R}, \mathbf{x} \mapsto \mathbf{w}^T \mathbf{x} + b = \sum_{i=1}^m w_i x_i + b$$
 (1)

- $\mathbf{v} \in \mathbb{R}^m$ is called weight vector
- ▶ $b \in \mathbb{R}$ is called bias

Definition 2. Linear classifier *defined as*

$$h_f : \mathbb{R}^m \mapsto \{-1, 1\}, \quad \mathbf{x} \mapsto sign(f(\mathbf{x})) = \begin{cases} 1 & \text{if } f(\mathbf{x}) \ge 0\\ -1 & \text{otherwise} \end{cases}$$
 (2)

Decision surface and decision regions

Definition 3. Decision surface of a linear classifier h_f is defined by: f(x) = 0

Decision surface of a linear classifier (red) is an (m-1)-dimensional hyperplane.

Linear separability

Definition 4. $X = \{(x_1, y_1), ..., (x_N, y_N)\}$ is called linearly separable if

$$\exists h_f: h_f(\mathrm{x}_i) = y_i, orall i = 1,...,N$$

(i.e. there exists a classifier h_f that classifies all points correctly).

(3)

Linear separability - Visualization

RWTH

Linear classifiers and inseparable training sets

How can we use linear classifiers for linearly inseparable training sets?

► Idea: Map the data into another space in which it is linearly separable

Feature Space Mappings

Definition 5. Let \mathcal{H} be a D-dimensional Hilbert space, $D \in \mathbb{N} \cup \{\infty\}$. A feature space mapping is defined as

$$\phi: \mathbb{R}^m \mapsto \mathcal{H}, \mathbf{x} \mapsto (\phi_i(\mathbf{x}))_{i=1}^D$$
(4)

- $\blacktriangleright \phi_i$ are called basis functions
- \blacktriangleright \mathcal{H} is called feature space

Linear discriminant function with feature space mapping ϕ

$$f(\mathrm{x}) = \langle \mathrm{w}, \phi(\mathrm{x})
angle + b, \quad \mathrm{w} \in \mathcal{H}$$

 $\langle \cdot, \cdot \rangle$ is the inner product of ${\cal H}$

A Hilbert space is a vector space with inner product $\langle \cdot, \cdot \rangle$.

(5)

Separate the XOR Example

Let $\mathcal{H} \equiv \mathbb{R}^2$ with $\langle \mathbf{x}, \mathbf{y} \rangle \equiv \mathbf{x}^T \mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ (dot product)

$$\phi : \mathbb{R}^2 \mapsto \mathcal{H}, \mathbf{x} \mapsto \begin{pmatrix} x_1 \\ x_1 x_2 \end{pmatrix} \tag{6}$$

$$f(\mathbf{x}) = (0 \ 1)^T \phi(\mathbf{x}) + 0 = x_1 x_2 \tag{7}$$

Feature Space Mappings - Complexity

> Evaluation of $f : \mathbb{R}^m \mapsto \mathbb{R}$ without feature space mapping

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b, \mathbf{w} \in \mathbb{R}^m$$
(8)

Complexity: $\mathcal{O}(m)$

Evaluation of *f* with feature space mapping

$$f(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + b, \mathbf{w} \in \mathcal{H}$$
 (9)

Complexity: $\mathcal{O}(dim(\mathcal{H}))$ Typically $dim(\mathcal{H}) \gg m$.

Reducing complexity

Idea: The inner product $\langle \phi(x), \phi(y) \rangle$ can often be computed very efficiently. Simple example:

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1 x_2 \\ x_2^2 \end{pmatrix}$$
(10)

Let $x,y\in \mathbb{R}^2$ arbitrary. Then

$$\langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle = \phi(\mathbf{x})^T \phi(\mathbf{y})$$
 (11)

$$= x_1^2 y_1^2 + 2 x_1 x_2 y_1 y_2 + x_2^2 y_2^2 \tag{12}$$

$$=(\mathbf{x}^T \mathbf{y})^2 \tag{13}$$

- ► Naive computation: 11 multiplications, 2 additions
- Optimized computation: 3 multiplications, 2 additions

Kernel Functions

$$k(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$$
 (14

is called kernel function or kernel.

Interpretation: A kernel measures similarity.

Dual form

In order to use kernels, we need to formulate our algorithms in the so called *dual form*.

 $\blacktriangleright \phi(\mathbf{x})$ occurs only as argument of an inner product $\langle \cdot, \cdot \rangle$

Definition 7. Let $X = \{(x_1, y_1), ..., (x_N, y_N)\}$ be a training set.

 \blacktriangleright Linear discriminant function f in dual form:

$$f(\mathbf{x}) = \sum_{i=1}^{N} \theta_i k(\mathbf{x}_i, \mathbf{x}) + b, \qquad \theta_i \in \mathbb{R}, i = 1, ..., N$$
(15)

We will see later how to determine θ_i .

(16)

Kernel Functions - Complexity

► Evaluation of $f : \mathbb{R}^m \mapsto \mathbb{R}$ without feature space mapping

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b, \mathbf{w} \in \mathbb{R}^m$$
(17)

Complexity: $\mathcal{O}(m)$

Evaluation of f with feature space mapping

$$f(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + b, \mathbf{w} \in \mathcal{H}$$
 (18)

Complexity: $\mathcal{O}(dim(\mathcal{H}))$

Evaluation of f in the dual form

$$f(\mathbf{x}) = \sum_{i=1}^{N} \theta_i k(\mathbf{x}, \mathbf{x}_i) + b, \theta_i \in \mathbb{R}$$
(19)

February 10, 20

Complexity: $\mathcal{O}(N)$ (Assuming $k(\cdot, \cdot)$ can be evaluated efficiently)

Popular kernel functions

There are many known kernels. Popular examples:

Polynomial kernel

$$k(\mathbf{x},\mathbf{y}) = (\mathbf{x}^T \mathbf{y} + c)^d, \quad c \in \mathbb{R}, d \in \mathbb{N}_0$$
 (20)

Gaussian kernel

$$k(\mathbf{x},\mathbf{y}) = \exp\left(\frac{-\|\mathbf{x}-\mathbf{y}\|_2^2}{\sigma^2}\right), \quad \sigma \in \mathbb{R}_+$$
 (21)

Both kernels are widely used in practice.

SVMs - Motivation

Support Vector Machines (SVMs) arose from the theoretical question:

► Given a training set. What is the *optimal* linear classifier?

Concept of margins

Definition 8. \blacktriangleright h_f linear classifier

► X training set

• (geometric) margin γ of h_f on X is the smallest distance from a point to the decision surface

Expected generalization error

- Vapnik answered the question using statistical learning theory
 - Idea: The optimal classifier has the lowest expected error on unknown data
- \blacktriangleright Data (points and labels) is generated i.i.d. according to a fixed but unknown distribution $\mathcal D$

Upper bound on the generalization error

$$\sum_{i \in \{-1,1\}} \int_{\mathbb{R}^m} \frac{1}{2} |1 - yh_f(\mathbf{x})| p(\mathbf{x}, y) dx \le \epsilon(h_f, X)$$
(22)

Maximum margin classifiers

Given a linearly separable training set.

What is the *optimal* linear classifier in terms of the upper bound ϵ ?

Result:

- \blacktriangleright The linear classifier with the largest margin γ on the training set.
 - Such classifiers are called maximum margin classifiers

See

- [Vapnik 95] for an introduction to statistical learning theory
- ▶ [Boser & Guyon⁺ 92] and [Vapnik 82] for more theoretical background on SVMs
- ► [Christiani & Shawe-Taylor 00] for a good overview
- [Shawe-Taylor & Bartlett⁺ 98] and [Bartlett & Shawe–Taylor 99] for Data Dependent Structural Risk Minimization

RWTH

Maximum margin visualized

Decision surface of a maximum margin classifier:

Computing margins

Lemma 1. Margin of h_f on X can be computed by

$$\gamma = \min_{i=1,\dots,N} \frac{y_i f(\mathbf{x}_i)}{\|\boldsymbol{w}\|_2}$$
(23)

• $\frac{y_i f(\mathbf{x}_i)}{\|w\|_2}$ is the euclidean distance from the point \mathbf{x}_i to the decision surface

SVM Learning

Assume the training set $X = \{(x_1, y_1), ..., (x_N, y_N)\}$ is linearly separable.

 \blacktriangleright How can we determine w, b such that the margin is maximal?

$$\max_{\mathbf{w},b} \gamma = \max_{\mathbf{w},b} \min_{i=1,\dots,N} \frac{y_i f(\mathbf{x}_i)}{\|w\|_2}$$
(24)

Observation:

▶ If we scale w and *b*, the decision surface does not move:

$$\lambda f(\mathbf{x}) = 0 \Leftrightarrow f(\mathbf{x}) = 0, \quad \text{ for } \lambda > 0$$
 (25)

 \triangleright (w, b) and (λ w, λ b) induce the same decision surface

Idea:

Scale w, b such that

$$y_i f(\mathbf{x}_i) = 1 \tag{26}$$

for the training examples x_i that have the smallest distance to the decision surface

RWTH

Optimization problem (primal form)

We can maximize γ by minimizing $\|w\|_2$:

$$\max_{\mathbf{w},b} \gamma = \max_{\mathbf{w},b} \min_{i=1,\dots,N} \frac{y_i f(\mathbf{x}_i)}{\|w\|_2} = \max_{\mathbf{w},b} \frac{1}{\|w\|_2} = \frac{1}{\min_{\mathbf{w},b} \|w\|_2}$$
(27)
$$= \frac{1}{\min_{\mathbf{w},b} \|w\|_2}$$
(28)

Resulting optimization problem in the linearly separable case (primal form):

$$\min_{\mathbf{w} \in \mathbb{R}^m, b \in \mathbb{R}} \quad \frac{1}{2} \|\mathbf{w}\|_2^2$$
(29)
subject to $y_i f(\mathbf{x}_i) \ge 1, \quad i = 1, ..., N$ (30)

Optimization theory: Lagrange multipliers

Introduce Langrange function and Lagrange multipliers.

Optimization problem:

$$\min_{\mathbf{x}\in\mathbb{R}^m} f(\mathbf{x}) \text{ subject to} \begin{cases} c_i(\mathbf{x}) = 0, i \in \mathcal{E} \\ c_i(\mathbf{x}) \ge 0, i \in \mathcal{I} \end{cases}$$
(31)

Lagrange function:

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(\mathbf{x})$$
(32)

 $\triangleright \lambda = (\lambda_1, ..., \lambda_l)$ are called *Lagrange mutlipliers*

Minimizing f subject to the constraints is equivalent to

- **•** Minimizing L w.r.t. x
- Maximizing L w.r.t. λ

Optimization theory: KKT conditions

First order necessary conditions

If x^* is local minimum of f (respecting the constraints), then there exists λ^* such that

$$\nabla_x \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0 \tag{33}$$

$$c_i(\mathrm{x}^*)=0, \;\; orall i\in \mathcal{E}$$
 (34)

$$c_i(\mathbf{x}^*) \ge 0, \quad \forall i \in \mathcal{I}$$
 (35)

$$\lambda_i^* \geq 0, \hspace{0.2cm} orall i \in \mathcal{I}$$
 (36)

$$\lambda_i^* c_i(\mathbf{x}^*) = 0, \quad \forall i \in \mathcal{E} \cup \mathcal{I}$$
 (37)

► All these conditions are called *Karush-Kuhn-Tucker conditions* (*KKT conditions*)

► The last conditions are called *complementary conditions*

See [Nocedal & Wrigt 06] for an in-depth introduction.

RWTH

Lagrangian and KKT conditions

SVM training problem: $X = \{(x_1, y_1), ..., (x_N, y_N)\}$ is linearly separable

$$\min_{\mathbf{w}\in\mathbb{R}^m,b\in\mathbb{R}} \quad \frac{1}{2} \|\mathbf{w}\|_2^2 \tag{38}$$

subject to
$$y_i(\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle + b) - 1 \ge 0, \quad i = 1, ..., N$$
 (39)

Lagrange function:

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \|w\|_2^2 - \sum_{i=1}^N \alpha_i(y_i(\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle + b) - 1)$$
(40)

KKT conditions:

$$\frac{\partial}{\partial \mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) = \mathbf{w} - \sum_{i=1}^{N} y_i \alpha_i \phi(\mathbf{x}_i) \stackrel{!}{=} 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{N} y_i \alpha_i \phi(\mathbf{x}_i)$$
(41)
$$\frac{\partial}{\partial b} \mathcal{L}(\mathbf{w}, b, \alpha) = \sum_{i=1}^{N} y_i \alpha_i \stackrel{!}{=} 0$$
(42)

Finding the dual (part 1)

KKT condition (part 1)

$$\frac{\partial}{\partial \mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) = \mathbf{w} - \sum_{i=1}^{N} y_i \alpha_i \phi(\mathbf{x}_i) \stackrel{!}{=} 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{N} y_i \alpha_i \phi(\mathbf{x}_i)$$
(43)

Substituting this condition back into the Langrange function:

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \|w\|_{2}^{2} - \sum_{i=1}^{N} \alpha_{i}(y_{i}(\langle \mathbf{w}, \phi(\mathbf{x}_{i}) \rangle + b) - 1)$$

$$= \frac{1}{2} \left\langle \sum_{i=1}^{N} y_{i} \alpha_{i} \phi(\mathbf{x}_{i}), \sum_{i=1}^{N} y_{i} \alpha_{i} \phi(\mathbf{x}_{i}) \right\rangle - \sum_{i=1}^{N} \alpha_{i} \left(y_{i} \left(\left\langle \sum_{i=j}^{N} y_{j} \alpha_{j} \phi(\mathbf{x}_{j}), \phi(\mathbf{x}_{i}) \right\rangle + b \right) - 1 \right)$$

$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle - \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle - b \sum_{i=1}^{N} \alpha_{i} y_{i} + \sum_{i=1}^{N} \alpha_{i}$$

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle - b \sum_{i=1}^{N} \alpha_{i} y_{i}$$

$$(44)$$

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle - b \sum_{i=1}^{N} \alpha_{i} y_{i}$$

$$(45)$$

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle - b \sum_{i=1}^{N} \alpha_{i} y_{i}$$

$$(47)$$

Finding the dual (part 2)

KKT condition (part 2)

$$\frac{\partial}{\partial b}\mathcal{L}(\mathbf{w},b,\alpha) = \sum_{i=1}^{N} y_i \alpha_i \stackrel{!}{=} 0$$
(48)

Substituting this condition back into the Langrange function:

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle - b \sum_{\substack{i=1 \\ i=0}}^{N} \alpha_i y_i$$

$$= \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j \underbrace{\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle}_{=k(\mathbf{x}_i, \mathbf{x}_j)}$$
(49)
(50)

Optimization problem (dual form)

KKT-conditions for inequality constraints:

$$\lambda_i^* \ge 0, \quad \forall i \in \mathcal{I}$$
 (51)

Optimization problem in the dual form: $X = \{(x_1, y_1), ..., (x_N, y_N)\}$ is linearly separable

$$\max_{\alpha \in \mathbb{R}^{N}} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$
(52)

subject to
$$\sum_{i=1}^{N} y_i \alpha_i = 0$$
 (53)
 $\alpha_i \ge 0, i = 1, ..., N$ (54)

► This is a *quadratic programming problem*

- Quadratic objective function, Linear constraints
- \triangleright Convex problem \Rightarrow Unique solution
- Can be solved using standard solvers
 - \triangleright Complexity $\mathcal{O}(N^3)$, N = # training examples

SVM classification

How do we classify new data points?

▶ Need to determine θ_i for the dual form $f(\mathbf{x}) = \sum_{i=1}^N \theta_i k(\mathbf{x}_i, \mathbf{x})$

KKT conditions yield:

$$\frac{\partial}{\partial \mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) = \mathbf{w} - \sum_{i=1}^{N} y_i \alpha_i \phi(\mathbf{x}_i) \stackrel{!}{=} 0$$

$$\Leftrightarrow \mathbf{w} = \sum_{i=1}^{N} y_i \alpha_i \phi(\mathbf{x}_i)$$
(55)

Insert into linear discriminant function (primal form):

$$f(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + b$$

$$= \left\langle \sum_{i=1}^{N} y_i \alpha_i \phi(\mathbf{x}_i), \phi(\mathbf{x}) \right\rangle + b$$

$$= \sum_{i=1}^{N} \underbrace{y_i \alpha_i}_{\theta_i} k(\mathbf{x}_i, \mathbf{x}) + b$$
(58)
(59)

Sparsity

Why is it called a sparse kernel machine?

▶ Recall: Evaluating $f(\mathbf{x})$ in the dual form costs $\mathcal{O}(N)$

$$f(\mathbf{x}) = \sum_{i=1}^{N} y_i \alpha_i k(\mathbf{x}, \mathbf{x}_i) + b, \alpha_i \in \mathbb{R}$$
(60)

Optimization problem (primal form):

$$\min_{\mathbf{w}\in\mathbb{R}^m,b\in\mathbb{R}} \quad \frac{1}{2} \|\mathbf{w}\|_2^2 \tag{61}$$

subject to
$$y_i f(\mathbf{x}_i) - 1 \ge 0, \quad i = 1, ..., N$$
 (62)

Complementary conditions:

$$\alpha_i(y_i f(\mathbf{x}_i) - 1) = 0, \quad \forall i = 1, ..., N$$
 (63)

Meaning

- **Either** $\alpha_i = 0$
- ▶ Or $y_i f(\mathbf{x}_i) = 1$

Support vectors

$$\alpha_i(y_i f(\mathbf{x}_i) - 1) = 0, \quad \forall i = 1, ..., N$$
 (64)

$$\Rightarrow \alpha_i = 0 \lor y_i f(\mathbf{x}_i) = 1 \tag{65}$$

 \Rightarrow only the Lagrange multipliers of the points closest to the hyperplane are non-zero.

- ► We call those points *support vectors*
- \blacktriangleright Set of support vector indices is denoted by \mathcal{SV}
- Evaluating f in the dual form is linear in the number of support vectors

$$f(\mathbf{x}) = \sum_{i=1}^{N} y_i \alpha_i k(\mathbf{x}, \mathbf{x}_i) + b = \sum_{i \in SV} y_i \alpha_i k(\mathbf{x}, \mathbf{x}_i) + b$$
(66)

► Typically:

 $N \gg |\mathcal{SV}|$

Support vectors visualized

Support vectors are circled

► Dashed lines are called *margin boundaries*

Support vectors - Implications

- Only the support vectors influence the decision surface
- ► The support vectors are the points *hardest to classify*
 - Give insight into the classification problem
- ► After learning, only the support vectors and their respective weights have to be saved
 - Modelsize is small compared to the size of the training set

Remaining questions

- ▶ What do we do if *X* is *not* linearly separable?
- ► What do we do if we have more than two classes?

RWTH

Learning inseparable case

X is *not* linearly separable.

- Introduce a penalty for points that violate the maximum margin constraint
- Penalty increases linearly in the distance from the respective boundary

 \triangleright Introduce so called *slack variables* ξ_i

Optimization problem (primal form):

$$\min_{\mathbf{w}\in\mathbb{R}^{m},b\in\mathbb{R},\xi\in\mathbb{R}^{N}} \quad \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C\|\xi\|_{1}$$
subject to $y_{i}(\langle \mathbf{w},\phi(\mathbf{x}_{i})\rangle + b) - 1 + \xi_{i} \ge 0, i = 1,...,N$
(68)

$$\xi_i \ge 0, i = 1, ..., N$$
 (70)

Imagesource: C. M. Bishop http://research.microsoft.com/en-us/um/people/cmbishop/prml/webfigs.htm

Learning inseparable case - Dual form

The dual form can be found in the same manner as in the linearly separable case. Result:

$$\max_{\alpha \in \mathbb{R}^N} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N y_i y_j \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j)$$
(71)

subject to
$$\sum_{i=1}^{N} y_i \alpha_i = 0$$

$$0 \le \alpha_i \le C, i = 1, ..., N$$
(72)
(73)

- C is a tradeoff parameter that determines how strongly a point is punished
- ▶ b can be calculated as before
- ▶ Points for which $\alpha_i \neq 0$ are still support vectors

SVMs for multiclass problems

If we have K classes 1, ..., K.

- ► Train *K* SVMs (one-against-all)
 - \triangleright Get *K* linear discriminant functions $f_1, ..., f_K$
- Assign a point to the class whose hyperplane is furthest from it
- Resulting classifier

$$h_{f_1,...,f_K}(\mathbf{x}) = \operatorname*{argmax}_{i=1,...,K} f_i(\mathbf{x})$$
 (74)

SVMs in practice

In MATLAB

- Implement on your own (5 lines of code)
 - Use quadprog to solve the quadratic programming problem
- Or use the built in library (better optimizer)
 - svmtrain to train the SVM
 - svmclassify to classify new data points
- ► Documentation: doc svmtrain Or doc quadprog

In C++

- Very good and easy to use libraries are available such as
 - LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 - > SVMLight http://svmlight.joachims.org/
- Highly optimized quadratic programming solvers
- Significantly faster than MATLAB

USPS Data Set

USPS Data set (9298 16×16 images)

Used feature vectors:

$$\begin{array}{c} \mathbf{2} \\ \mathbf{2} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{$$

Tobias Pohlen: Support Vector Machines

(75)

RWTH

Performance comparison

SVM performance benchmark as summarized by Vapnik in [Vapnik 95]

Classifier	Best parameter choice	$ \mathcal{SV} $	Raw error in %
Human performance	-	-	2.5%
Decision tree, C4.5	-	-	16.2%
Best two-layer neural network	-	-	5.9%
Five-layer network (LeNet 1)	-	-	5.1%
SVM with polynomial kernel	d=3	274	4.0%
SVM with Gaussian kernel	$\sigma^2=0.3$	291	4.1%

Limitations of SVMs

- ▶ It's not clear how an appropriate kernel should be chosen for a given problem
- Computationally expensive:
 - \triangleright Training in the dual form (N training examples): $\mathcal{O}(N^3)$
 - Infeasible for large-scale applications
 - > Training in the primal form (*m*-dimensional input space): $\mathcal{O}(m^3)$
 - \triangleright Evaluation of f in the dual form more expensive than in the primal form
 - ▶ Evaluation practically infeasible if number of support vectors is very large

Conclusion

- SVMs use a simple linear model
- ► Feature space mappings enlarge the range of linearly separable training sets
 - They can efficiently be used by enabling kernel functions
- Good generalization performance
 - Margin concept
- Convex optimization problem
- ► In practice SVMs are good *blackbox classifiers*
 - They give reasonable good results without much effort
 - When dealing with new classification problems, it's often a good choice to try SVMs using different kernels

Support Vector Machines - References

See

- [Nocedal & Wrigt 06] for an indepth introduction to numerical optimization (theory and practice)
- ▶ [Bishop 06] and [Christiani & Shawe-Taylor 00] for the derivations of the dual forms
- ▶ [Burges 98] for some thoughts about limitations
- [Dalal & Triggs 05] for a practical application of SVMs in computer vision
- [Vapnik 95] For a performance comparison (Kernel SVM vs. Neural Network)
- [Shawe-Taylor & Cristianini 06] for more background on kernels
- ► [Mercer 09] for a proof of Mercer's theorem

Thank you for your attention

Tobias Pohlen

tobias.pohlen@rwth-aachen.de

http://www.geekstack.net/seminar-paper

GoBack

6

References

- [Bartlett & Shawe–Taylor 99] P. Bartlett, J. Shawe–Taylor: Generalization Performance of Support Vector Machines and Other Pattern Classifiers. In B. Schölkopf, C.J.C. Burges, A.J. Smola, editors, *Advances in Kernel Methods Support Vector Learning*, pp. 43–54, Cambridge, MA, 1999. MIT Press. 22
- [Bishop 06] C.M. Bishop: *Pattern Recognition and Machine Learning*. Springer, New York, 2006. 47
- [Boser & Guyon⁺ 92] B.E. Boser, I.M. Guyon, V.N. Vapnik: A Training Algorithm for Optimal Margin Classifiers. In *Proceedings of the Fifth Annual Workshop on Computational Learning Theory*, COLT '92, pp. 144–152, New York, NY, USA, 1992. ACM. 22
- [Burges 98] C.J.C. Burges: A Tutorial on Support Vector Machines for Pattern Recognition. *Data Min. Knowl. Discov.*, Vol. 2, No. 2, pp. 121–167, June 1998. 47
- [Christiani & Shawe-Taylor 00] N. Christiani, J. Shawe-Taylor: *An introduction to support vector machines*. Cambridge University Press, 2000. 22, 47
- [Dalal & Triggs 05] N. Dalal, B. Triggs: Histograms of Oriented Gradients for Human Detection. In C. Schmid, S. Soatto, C. Tomasi, editors, *International Conference on Computer Vision & Pattern Recognition*, Vol. 2, pp. 886–893, INRIA Rhône-Alpes, ZIRST-655, av. de l'Europe, Montbonnot-38334, June 2005. 47

- [Mercer 09] J. Mercer: Functions of positive and negative type, and their connection with the theory of integral equations. *Philosophical Transactions of the Royal Society, London*, Vol. 209, pp. 415–446, 1909. 47
- [Nocedal & Wrigt 06] J. Nocedal, S.J. Wrigt: *Numerical optimization*. Springer, second edition edition, 2006. 28, 47
- [Shawe-Taylor & Bartlett⁺ 98] J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, M. Anthony: Structural Risk Minimization Over Data-Dependent Hierarchies. *IEEE Transactions on Information Theory*, Vol. 44, No. 5, pp. 1926–1940, 1998. 22
- [Shawe-Taylor & Cristianini 06] J. Shawe-Taylor, N. Cristianini: *Kernel Methods for Pattern Analysis*. Cambridge University Press, 2006. 47
- [Vapnik 82] V. Vapnik: Estimation of Dependences Based on Empirical Data: Springer Series in Statistics (Springer Series in Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1982. 22

[Vapnik 95] V.N. Vapnik: The Nature of Statistical Learning Theory. Springer, 1995. 22, 44, 47