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Literature

N. Christiani, J. Shawe-Taylor An introduction to support vector machines, Cambridge Univer-
sity Press, 2000.

» Indepth introduction to SVMs (theoretical and practical concepts)
V. N. Vapnik The nature of statistical learning theory, Springer, 1995
» Theoretical background of SVMs

C. J. C. Burges A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and
Knowledge Discovery 2, 1998, pages 121-167

» Good and short introduction to SVMs (Only 40 pages)
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Classification Problem

We want to solve the binary classification problem

» Training set X = {(x1,Y1),.-s (xXn,yn)} CR™ x {—1,1}

> Input space R™
> training examples x; and
> class labels y;

Goal:

» Assign the vector x to one of the classes —1 or 1

We will consider the multiclass problem later.
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Classification Problem - Visualization

A L2
o
@) (]
@]
@) o
o °
o
o
@) o (] °
@)
@) o
1

06
Tobias Pohlen: Support Vector Machines 5/48 February 10, 2014  @achén




RWNTH
Linear discriminant functions and linear classifiers

Definition 1. Linear discriminant function defined as

f:]le—>R,XI—>WTX—|—b:Zwi:Bi—I—b (1)
1=1
» w € R™ s called weight vector

» b € R js called bias

Definition 2. Linear classifier defined as

by R™ s {—1,1}, x > sign(£(x)) ={_} 7100 2 0 @)

:
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Decision surface and decision regions

Definition 3. Decision surface of a linear classifier hy is defined by: f(x) = 0

Class —1\ Class 1

> L1

N s o

Decision surface of a linear classifier (red) is an (mn — 1)-dimensional hyperplane.

R\WNTH
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RWTH
Linear separability

Definition 4. X = {(x1,v1), ..., (Xn,yn)} is called linearly separable if
3hs: he(x) =y, Vi=1,..., N (3)

(L.e. there exists a classifier h ¢ that classifies all points correctly).
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Linear separability - Visualization

Linearly separable training set
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Linear classifiers and inseparable training sets

How can we use linear classifiers for linearly inseparable training sets?

» Ildea: Map the data into another space in which it is linearly separable

p L2 \ ¢2 (X)
X6
X5
—_—
X2X3
X
X1 4 X7
T ¢1 (X)
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Feature Space Mappings

Definition 5. Let # be a D-dimensional Hilbert space, D € N U {oo}.

A feature space mapping is defined as
¢ : R™ — H,x — (¢i(x))2,
» ¢; are called basis functions

» H is called feature space

Linear discriminant function with feature space mapping ¢
f(x)=(w,¢(x))+b, weH

(-, +) is the inner product of ‘H

A Hilbert space is a vector space with inner product (-, -).
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Separate the XOR Example

Let # = R? with (x,y) = xTy = x - y (dot product)

R\WNTH

. TR2 L1
(,s.RHu,XH(wm) 6)
F(x) = (0 1)"¢(x) + 0 = x12, (7)
Decision surface in the input space Decision surface in the feature space
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Feature Space Mappings - Complexity

» Evaluation of f : R™ — R without feature space mapping
f(x) =wlx+b,w€R™ (8)

Complexity: O(m)

» Evaluation of f with feature space mapping
f(x) =(w,o(x)) +b,w € H (9)

Complexity: O(dim(H))
Typically dim(#) > m.

:
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Reducing complexity

Idea: The inner product (¢(x), ¢(y)) can often be computed very efficiently.

Simple example:

T
Qb(X) = ( \/5:1:11,@ ) (10)
T
Let x, y € R? arbitrary. Then
(p(x), d(y)) =0 (x)" o(y) (11)
=.’I:fyf + 2x122Y1Y2 + m§y§ (12)
=(x"y)? (13)

» Naive computation: 11 multiplications, 2 additions

» Optimized computation: 3 multiplications, 2 additions

[ ]
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Kernel Functions

Definition 6. Let ¢ : R™ — H be a feature space mapping.

k(x,y) = (¢(x), ¢(y))

is called kernel function or kernel.

Interpretation: A kernel measures similarity.
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RWNTH
Dual form

In order to use kernels, we need to formulate our algorithms in the so called dual form.

» ¢(x) occurs only as argument of an inner product (-, -)

Definition 7. Let X = {(x1,¥1), ..., (XN, YynN)} be a training set.

» Linear discriminant function f in dual form:

N
f(x) =) Oik(xiyx)+b, 6;€Ri=1,..,N (15)
1=1

(16)

We will see later how to determine 0.

:
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Kernel Functions - Complexity

» Evaluation of f : R — R without feature space mapping
f(x) =wix+b,wecR™ (17)

Complexity: O(m)

» Evaluation of f with feature space mapping
fx)=(w,9(x)) +b,weH (18)

Complexity: O(dim(H))

» Evaluation of f in the dual form

N
f(x) =) 0ik(x,x;) +b,6; €R (19)

=1

Complexity: O(N)
(Assuming k(-, -) can be evaluated efficiently)

:
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Popular kernel functions

There are many known kernels. Popular examples:

» Polynomial kernel

R\WNTH

k(x,y) = (xy+¢)% ceR,deN (20)
» Gaussian kernel
k(x,y) = exp <_HX0__2 y||§> , oc Ry (21)
Both kernels are widely used in practice.
[
E
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Support Vector Machines (SVMs) arose from the theoretical question:

SVMs - Motivation

» Given a training set. What is the optimal linear classifier?

4

, L2
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Concept of margins

Definition 8. » h; linear classifier
» X training set

» (geometric) margin v of hy on X is the smallest distance from a point to the decision surface
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Tobias Pohlen: Support Vector Machines 20/48 February 10, 2014  @achén



o RWTH
Expected generalization error

» Vapnik answered the question using statistical learning theory
> ldea: The optimal classifier has the lowest expected error on unknown data

» Data (points and labels) is generated i.i.d. according to a fixed but unknown distribution D

Upper bound on the generalization error

1
> [ S = vhs@)Ipe y)de < e(hs, X) (22)
ie{-1,13 7 R"

:
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Maximum margin classifiers

Given a linearly separable training set.
What is the optimal linear classifier in terms of the upper bound €?

Result:
» The linear classifier with the largest margin ~ on the training set.

> Such classifiers are called maximum margin classifiers

See
» [Vapnik 95] for an introduction to statistical learning theory
» [Boser & Guyon™ 92] and [Vapnik 82] for more theoretical background on SVMs
» [Christiani & Shawe-Taylor 00] for a good overview

» [Shawe-Taylor & Bartlett* 98] and [Bartlett & Shawe-Taylor 99] for Data Dependent Struc-
tural Risk Minimization

:
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Maximum margin visualized

Decision surface of a maximum margin classifier:

L2
A
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Computing margins

Lemma 1. Margin of hy on X can be computed by

— min %09 (23)
i=1oN |2
> yﬁf (ﬁ‘@) is the euclidean distance from the point x; to the decision surface
o
£
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SVM Learning

Assume the training set X = {(x1,91),-..., (xXn, yn)} is linearly separable.

» How can we determine w, b such that the margin is maximal?

max Yy = max min yif (i) (24)
w,b w,b 1=1,...,IN ||’u)||2
Observation:
» If we scale w and b, the decision surface does not move:
AMf(x) =0& f(x) =0, forA>0 (25)
> (w, b) and (Aw, Ab) induce the same decision surface
Idea:
» Scale w, b such that
yif (xi) =1 (26)
for the training examples x; that have the smallest distance to the decision surface
[
£
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Optimization problem (primal form)

We can maximize ~ by minimizing ||w||-:

_ . yif(xi) 1

max -~y = max min — max (27)

w,b w,b 2=1,...,IN ||w||2 w,b ||w||2

1
= — (28)
miny, || w]|2
Resulting optimization problem in the linearly separable case (primal form):

i L 2 29
Jomin w3 (29)
subjectto y,f(x;) > 1, t1=1,.... N (30)

:
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Optimization theory: Lagrange multipliers

Introduce Langrange function and Lagrange multipliers.
Optimization problem:

min f (x) subject to

ci(x) =0,i €&
Cz’(X) Z 077: el

Lagrange function:

L(x,A) = F(x) — Y Xici(x)

1€eEUT

» A = (Aq,..., \y) are called Lagrange mutlipliers
Minimizing f subject to the constraints is equivalent to
» Minimizing L w.r.t. x

» Maximizing L w.r.t. A

R\WNTH
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Optimization theory: KKT conditions

First order necessary conditions

If x* is local minimum of f (respecting the constraints), then there exists A* such that
V. L(x";A%) =0 (33)

ci(x*) =0, Vi€€ (34)

ci(x*) >0, VieT (35)

Al >0, Viel (36)

Alci(x*) =0, Vie EUTL (37)

» All these conditions are called Karush-Kuhn-Tucker conditions (KKT conditions)

» The last conditions are called complementary conditions

See [Nocedal & Wrigt 06] for an in-depth introduction.

:
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Lagrangian and KKT conditions

SVM training problem: X = {(x1,v1), ..., (xn, yn)} is linearly separable

1
(38)

min_ —[|w||;
) , N (39)

subjectto y;({w,d(x;)) +b)—1>0, 1=1,...

Lagrange function:

1 N
L(w,bya) = llwll; = 3 aiwi((w, 6(xi)) +b) —1) (40)
1=1
KKT conditions:
) N : N
S L(Wsb @) =w — ; yioip(x;) =0 = w = ; Yo p(x;) (41)
) N :
[ )
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Finding the dual (part 1)

KKT condition (part 1)

—£(w, b,a) =w — Z yicip(x;) = 0 = w = Z yiovi(x;) (43)

=1 =1

Substituting this condition back into the Langrange function:

N
L(w,b,a) = %llwﬂg - Zai(yi((W, ¢(xi)) +b) — 1) (44)
1 N . N N N
= <Z yioip(x;), Z yiai¢(xi)> — Z a; (yz <<Z Y0 P(x;), ¢(Xi)> + b) — 1)
_ _ _ h (45
Py Z Z YiYjxi aJ(gb(X@) ¢(XJ)> - Z Z YiY;oiy (d(x5), ¢(XJ)> - bz a;Y; + Z (871
o o (46)
N
=D i~ Z Z yayieuc (B(x:), $(x;)) — bz Y, (47)
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Finding the dual (part 2)

KKT condition (part 2)

0

N
%‘C(Wa b, a) — z_: Yix; ; 0 (48)

Substituting this condition back into the Langrange function:

L(w,b,a) = Z o — = Z Z Yiyj o (P(x:), p(x;)) — b Z oy (49)
N =0
=) ai— = Z Z yiiec; (B (%), $(x5)) (50)
=1 =1 j5=1 —k(Xqu)
[ )
E
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RWNTH
Optimization problem (dual form)

KKT-conditions for inequality constraints:

AF>0, VieT (51)

Optimization problem in the dual form: X = {(x1,v1),..., (x~n,yn)} is linearly separable

N 1 N N
i— = iYjoiogk (X, x; 52
R 2T ek ) *
N
subject to Zyiai -0 (53)
=1
;>0,i=1,.., N (54)

» This is a quadratic programming problem

> Quadratic objective function, Linear constraints
> Convex problem = Unique solution

» Can be solved using standard solvers

> Complexity O(N?), N = # training examples

:
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SVM classification

How do we classify new data points?

» Need to determine 6; for the dual form f(x) = S~ 0;k(x;, x)

KKT conditions yield:

) N !
8—W£(w, bya) =w — Y yiop(x;) =0

=1

N
& w=> yid(x)
1=1
Insert into linear discriminant function (primal form):

f(X) — <Wa ¢(X)> +0b

<Z yioid(x;), ¢(X)> +b

=1

N
= ;yieai k(x;,x)+b

R\WNTH
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Sparsity

Why is it called a sparse kernel machine?

» Recall: Evaluating f(x) in the dual form costs O(INV)

N
f(x) = yiaik(x,%;) + b,a; €R

1=1
Optimization problem (primal form):

. 1 9
min__ —||wl|;

subjectto y,;f(x;) —1 >0, t1=1,.... N
Complementary conditions:
al(yzf(xz) - ].) — O, Vi = ]., ...,N

Meaning
» Either o; = 0
> Ory;f(x;) =1
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RWNTH
Support vectors

ai(yif(xi) —1) =0, Vi=1,..,N (64)
= a; =0V yzf(X@) =1 (65)

= only the Lagrange multipliers of the points closest to the hyperplane are non-zero.

» We call those points support vectors
» Set of support vector indices is denoted by SV

» Evaluating f in the dual form is linear in the number of support vectors

N
F(x) =) wyiok(x,x;) +b= > yiok(x,%;) + b (66)
=1 1ESY
» Typically:
N > |SV)| (67)
[
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Support vectors visualized

» Support vectors are circled

» Dashed lines are called margin boundaries
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Support vectors - Implications

» Only the support vectors influence the decision surface
» The support vectors are the points hardest to classify
> Give insight into the classification problem
» After learning, only the support vectors and their respective weights have to be saved

> Modelsize is small compared to the size of the training set

:
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Remaining questions

» What do we do if X is not linearly separable?

» What do we do if we have more than two classes?

R\WNTH
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Learning inseparable case

X is not linearly separable.
» Introduce a penalty for points that violate the maximum margin constraint
» Penalty increases linearly in the distance from the respective boundary
> Introduce so called slack variables &;

Optimization problem (primal form):

1 2
i - C 68
vermiin o~ VI Cligl (68)
subjectto y;((w,(x;)) +b) —1+& >0,i=1,...,N (69)
&>0,i=1,...N (70)

Imagesource: C. M. Bishop http://research.microsoft.com/en-us/um/people/cmbishop/prml/webfigs.htm
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o RWTH
Learning inseparable case - Dual form

The dual form can be found in the same manner as in the linearly separable case.
Result:

N 1 N N
max o — — Z Z yiyjaiajk(xi, Xj) (71)
acRN 3 2 “ .
=1 1=1 j3=1
N
subjectto ) ya; =0 (72)
1=1
OgaiSC,izl,...,N (73)

» C is a tradeoff parameter that determines how strongly a point is punished
» b can be calculated as before

» Points for which «a; # 0 are still support vectors

[ ]
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SVMs for multiclass problems

If we have K classes 1, ..., K.
» Train K SVMs (one-against-all)
> Get K linear discriminant functions f, ..., fx
» Assign a point to the class whose hyperplane is furthest from it

» Resulting classifier

Ry, gxc (X) = argmax fi(x)

1=1,.... K
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SVMs in practice

In MATLAB
» Implement on your own (5 lines of code)
> Use quadprog to solve the quadratic programming problem
» Or use the built in library (better optimizer)

> svmtrain to train the SVM
> svmclassify to classify hew data points

» Documentation: doc svmtrain Of doc quadprog

In C++
» Very good and easy to use libraries are available such as

> LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/
> SVMLight http://svmlight . joachims.org/

» Highly optimized quadratic programming solvers
» Significantly faster than MATLAB
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RWNTH
USPS Data Set

USPS Data set (9298 16 x 16 images)

O/ L34 0c/7

Used feature vectors:

152

\ 31
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Performance comparison

SVM performance benchmark as summarized by Vapnik in [Vapnik 95]

Classifier Best parameter choice | |SV| | Raw error in %
Human performance - - 2.5%
Decision tree, C4.5 - - 16.2%
Best two-layer neural network | - - 9.9%
Five-layer network (LeNet 1) |- - 9.1%
SVM with polynomial kernel |d = 3 274 4.0%
SVM with Gaussian kernel | o? = 0.3 291 4.1%
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Limitations of SVMs

» It’s not clear how an appropiate kernel should be chosen for a given problem
» Computationally expensive:

> Training in the dual form (IV training examples): O(N?)
o Infeasible for large-scale applications
> Training in the primal form (m-dimensional input space): O(m?)
> Evaluation of f in the dual form more expensive than in the primal form
> Evaluation practically infeasible if number of support vectors is very large

:
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Conclusion

» SVMs use a simple linear model

» Feature space mappings enlarge the range of linearly separable training sets
> They can efficiently be used by enabling kernel functions

» Good generalization performance
> Margin concept

» Convex optimization problem

» In practice SVMs are good blackbox classifiers

> They give reasonable good results without much effort

> When dealing with new classification problems, it’s often a good choice to try SVMs using
different kernels

:
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Support Vector Machines - References

See

» [Nocedal & Wrigt 06] for an indepth introduction to numerical optimization (theory and prac-
tice)

» [Bishop 06] and [Christiani & Shawe-Taylor 00] for the derivations of the dual forms
» [Burges 98] for some thoughts about limitations

» [Dalal & Triggs 05] for a practical application of SVMs in computer vision

» [Vapnik 95] For a performance comparison (Kernel SVM vs. Neural Network)

» [Shawe-Taylor & Cristianini 06] for more background on kernels

» [Mercer 09] for a proof of Mercer’s theorem

:
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Thank you for your attention

Tobias Pohlen

tobias.pohlen@rwth—aachen.de

http://www.geekstack.net/seminar—-paper
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